| 网站首页 | 范文 | 演讲致词 | 汇报体会 | 总结报告 | 公文方案 | 领导讲话 | 党建工会 | 论文 | 文档 | 
您现在的位置: 范文大全网 >> 论文 >> 免费范文 >> 正文 用户登录 新用户注册
两种不同培养方法对破骨细胞ATPase a3基因表达和骨吸收活性的影响           
两种不同培养方法对破骨细胞ATPase a3基因表达和骨吸收活性的影响

               作者:杜文喜 肖鲁伟 吴承亮 厉驹 童培建

【摘要】  [目的]探讨不同方法培养下的大鼠破骨细胞(osteoclast,OC)骨吸收功能的差异,以及骨吸收关键基因ATPase a3的mRNA表达水平的差异,为体外实验奠定基础。[方法]机械分离和诱导培养,即从新生24h的大鼠长干骨骨髓腔内壁机械分离成熟OC和1,25(OH)2 D3诱导大鼠骨髓细胞形成破骨样细胞(osteoclast like cell,OLC),对获得的OC进行形态和骨吸收功能观察,并测定OC骨吸收关键基因ATPase a3的mRNA表达水平的差异。[结果]OC和OLC均为抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRAP)染色阳性的多核巨细胞,与细胞共培养骨片上可形成骨吸收陷窝;诱导法培养出的OLC数目多于机械分离法,但诱导早期陷窝较之小而浅,诱导后期基本接近OC;OC骨吸收关键基因ATPase a3的mRNA,在机械分离8h与诱导培养6天的细胞表达量无显著差异,但都远少于培养8天的表达量。[结论]诱导法可以培育出大量的OLC,优于机械分离法,但早期骨吸收功能较弱,OC骨吸收功能与其核数相关。后期的OCL与机械分离OC接近,可以用于各类实验。

【关键词】  破骨细胞 破骨样细胞 骨吸收 ATPase a3

破骨细胞(osteoclast,OC)是骨吸收的执行细胞,OC骨吸收机制研究对阐明骨组织生理病理机制和代谢性骨病的防治具有十分重要的意义,然而OC为高代谢的分化终末细胞,组织含量极少又非常脆弱,自 Chambers首次建立OC体外培养的方法以来,各国学者不断完善,李氏等在国内首次建立了骨髓细胞诱导培养法,建立了破骨样细胞(osteoclast like cell,OLC)培养体系,发现OLC和OC是同一种细胞[12]。OC的骨吸收功能以及形成的数目,是其活性的集中体现,同时,ATPase a3基因是骨吸收功能执行的关键基因,该基因的缺乏或突变,是骨吸收障碍发生骨硬化症和胚胎致死的关键原因[3]。本实验在经典的机械分离法和骨髓细胞诱导培养法的基础上加以改进,对其形态、分化及功能进行了动态观察,测定OC骨吸收关键基因ATPase a3的mRNA表达水平量,探讨不同方法培养下的OC骨吸收功能的差异。

  1  材料

  1.1  动物  新生24h内SD大鼠乳鼠,4周龄SD雄性大鼠(SPF级),由浙江中医药大学实验动物中心提供[SCXK(沪)20030003]。

  1.2  主要试剂  M199培养基、αMEM培养基、HEPES液(美国Gibco公司),1,25(OH)2D3、萘酚ASBI磷酸盐(美国Sigma 公司),甲苯胺蓝(瑞士Fluka公司)、胎牛血清(杭州四季青公司),Trizol、引物合成(美国Invitrogen公司),MMLV 逆转录酶(美国promege公司)。

  1.3  盖玻片及骨磨片的制备  将10×10mm盖玻片,经硫酸-重铬酸钾清洗液中过夜,蒸馏水超声波清洗,自然晾干,高压消毒后备用。取新鲜成年牛股骨皮质骨,锯成厚骨片,经角磨机和细金刚砂纸磨至约15μm厚,再剪成5×5mm大小,三蒸水中超声波清洗后,自然晾干,使用前紫外线双面照射各4 h。

  2  方法

  2.1  大鼠OC机械分离法培养  参考文献[4]方法操作,培养1h后再用培养液冲洗,分别于4、8和10h取出盖玻片进行抗酒石酸酸性磷酸酶(tartrate resistant acid phosphatase,TRAP)染色,8h时抽提OC总RNA,并将与OC共培养24h的骨片甲苯胺蓝染色。

  2.2  大鼠骨髓细胞诱导法  选用4周龄SD雄性大鼠,断颈处死,无菌条件下分离完整股骨、胫骨,暴露髓腔后用αMEM培养基(含20%胎牛血清)冲洗骨髓腔数次至骨干发白为止。冲洗液200目筛网过滤后,收集液接种于25ml培养瓶,标准培养(饱和湿度、5% CO2、37℃) 1h后收集上层细胞液(含骨髓单核细胞),500 r/min,4℃离心5 min,弃上清,用完全培养基(含20%胎牛血清、1×10-8mol/L的1,25(OH)2D3、青霉素100U/ml、链霉素100μg/ml的αMEM培养基)稀释细胞至1.5×106个/孔,将细胞悬液加入预置盖玻片或牛骨片的进口24孔细胞培养板。常规培养,每3 d换液1次,每次换总量的一半。培养全过程中,动态观察细胞的形态和生长状态,分别于3,6,8,11,14d取出盖玻片进行TRAP染色,抽提6d和8d的OLC总RNA,并将8d、12d与OLC共培养骨片甲苯胺蓝染色。

  2.3  OC的形态观察  分别对不同方法培养的细胞进行观察,TRAP染色。将待定培养时间的细胞爬片取出,按照文献[4]方法与步骤进行染色,甘油明胶封片,光镜观察。其中诱导培养法中的OLC含2个胞核以上且呈TRAP染色阳性的细胞即为OC。在200倍光镜下进行OC计数,每个玻片上随机选择10个视野,计数阳性细胞均值并做统计。

  2.4  骨吸收功能观察  分别取与上述细胞共培养的骨片,经2.5%戊二醛溶液固定、0.25mol.L-1氢氧化铵中超声波清洗,系列酒精脱水,自然晾干,1%甲苯胺蓝染色,观察骨片上骨陷窝形态并拍照,利用计算机图像分析系统计算整张骨片上骨吸收陷窝面积之和,结果以陷窝面积/片(mm2/片)表示。通过骨片上吸收陷窝的面积变化情况,进一步鉴定两种OC体外培养体系差异。并将观察后的骨片用2.5%戊二醛和1%四氧化锇各固定,酸性二钾氧基丙烷梯度脱水,丙酮清洗,CO2临界点干燥,镀金,制备电子显微镜标本。

  2.5  RTPCR半定量分析  Trizol法提取细胞总RNA,取1μg 总RNA采用两步法RTPCR。ATPase a3基因[5]与内参甘油醛3磷酸脱氢酶(glyceraldehyde3phosphate dehydrogenase, GAPDH)引物(见表1)。PCR反应条件为:94℃ 30sec,61℃(GAPDH 60℃)30sec,72℃ 1min。取扩增产物各10μl在1.7%琼脂糖凝胶电泳,用Imagepro plus 6.0软件对扩增产物进行密度值分析,分别计为DATPase a3、DGAPDH,DATPase a3 / DGAPDH表示ATP a3 mRNA的相对含量。

  2.6  统计学分析    采用SPSS13.0统计软件包进行统计。各组数据采用x±s表示,计量资料比较用单因素方差分析(oneway ANOVA)。以P<0.05为显著性差异,P<0.01为非常显著性差异。

  3  结果

  3.1  OC形态观察  新生大鼠机械分离的细胞数量较多,均匀平铺。培养1h后,大部分未贴壁细胞被M199冲走,此时可见到玻片上多核OC。4h后细胞形态清晰,表面有微绒毛,呈伪足样运动,细胞外形不断变化,部分细胞之间纤维样突出连接(图1),随着培养时间的延长,细胞充分伸展,体积变大,核仁清晰可见。但培养24h后,大部分OC细胞壁增厚,核固缩,微绒毛消失。含1,25(OH)2D3诱导剂的大鼠骨髓细胞悬液接种于培养板后,4h见细胞均匀分布于培养板底部,呈短梭形贴壁生长。诱导培养6d时,可见体积较大、多核(3~10个)的OLC,呈圆形、多角型等多种形态,时有细胞突起向外延展,胞质密度较低,细胞核或集聚在细胞中央,或散在细胞周边,核内可见1~2个核仁不等(图2),周围的单核细胞不断融合在较大的OCL中,细胞核逐渐增多,与机械分离培养4h的OC相似。随着培养时间的延长,OLC数量递增,8d时达峰值,后期细胞开始空泡变性,细胞裂解碎片增加,细胞核呈现固缩、碎裂,细胞膜破裂,细胞死亡。

  3.2  TRAP 染色  TRAP染色是鉴定OC的特异性酶学染色方法,TRAP染色阳性(TRAP+)为:细胞质染成红色或酒红色,细胞核不着色。机械分离的细胞培养4h后可见到典型的TRAP+的OC,培养8h、10h与4h相比较TRAP+的OC数量没有显著差别(P>0.05)(见表2),但到10h时OC细胞萎缩,空泡变性明显(图3)。诱导培养第6d开始,可见多核TRAP+细胞,之后TRAP+的细胞逐渐增多,出现较大型的多核细胞,并在第8d数量达到高峰(图4),与其它时间组差异明显(P<0.01),11d时TRAP+细胞减少,细胞着色逐渐变淡,颜色转晦暗,第14天TRAP+细胞完全消失。(见表3)
   
  图1  机械分离培养 4h,表面有微绒毛(小箭头),细胞之间纤维样突出连接(大箭头)。(倒置显微镜×200) (略)    

  图2  诱导培养第6天,单核细胞之间,出现体积较大、多核OLC(箭头)。(倒置显微镜×400)(略)     

  图3  机械分离培养 10h,TRAP染色阳性,OC空泡变性(小箭头)。(TRAP染色×200) (略)    

  图4  诱导培养第8天,TRAP染色阳性的多核细胞(燕尾箭头),单核细胞核增多,体积增大(三角箭头),TRAP+的单核细胞(白色箭头)。(TRAP染色×200)(略)

  表1  各基因引物序列及片段大小(略)

  表2  机械分离法不同时间TRAP+ 细胞个数(略)

  不同培养天数之间比较P>0.05

  表3  不同诱导天数TRAP+ 细胞个数(略)

  不同培养天数之间比较,※P>0.05,△P<0.05,▲P<0.01

  3.3  骨吸收功能观察  骨片上吸收陷窝是OC骨吸收的直接结果,其陷窝数量、大小和深度直接反应OC骨吸收的能力。机械法培养24h的骨片甲苯胺蓝染色后,在光镜下可见吸收陷窝呈蓝紫色圆形、椭圆形、腊肠形等多种形态(图5),边界清楚,部分出现穿凿样改变。而诱导培养8d时,在骨片上发现少量呈蓝紫色小陷窝,随着诱导时间的延长,陷窝的数量、深度均增加,12d时可见大量的吸收陷窝(图6)。经扫描电镜观察可清楚识别骨吸收陷窝,成熟的OC骨吸收陷窝较OLC深,底面粗糙,可见有纤维样基底(图7),但是相同面积大小的骨片上,诱导12d的骨陷窝数量明显多于机械法。机械法培养24h的骨吸收陷窝比诱导培养8d形成的骨陷窝面积略多,但远少于诱导12d形成的骨吸收陷窝面积。同时机械法产生的吸收陷窝的个数多于诱导8d,远少于诱导12d的数量。(见表4)

  表4  不同培养条件骨陷窝的个数(个)和陷窝面积(略)

  不同培养时间之间比较△P<0.05、▲P<0.01。

  3.4  两种方法ATPase a3的表达变化  ATPase a3基因经RTPCR扩增,1.7%琼脂糖凝胶电泳(图8),发现机械分离8h目的基因扩增产物密度值少于诱导培养8d,差异明显(P<0.01),但与诱导培养6d无差异(P>0.05),而且相对密度值同样少于诱导培养8d。(见表5)   

  图5  机械分离培养24h,与OC共培养的骨片,出现较周围骨组织深染的骨陷窝,腊肠形骨质吸收区(箭头)。(甲苯胺蓝染色×150)(略)   
  图6  诱导培养12d,与OLC共培养的骨片,出现大量骨陷窝,斑片状骨质吸收区(箭头)。(甲苯胺蓝染色×150)(略)
   
  图7  机械分离培养24h,与OC共培养的骨片,骨吸收陷窝较深呈现呈不规则形,边界清晰、底面粗糙不平(箭头)。(扫描电镜×150)(略)   
  图8  RTPCR产物,ATPase a3基因mRNA表达量,诱导法8d较其它时间段多。(略)

  表5  不同时间段RTPCR产物密度值(略)

  不同组间比较,※P>0.05,△P<0.05,▲P<0.01

  4  讨论
    
  OC是高度分化的多核巨细胞,直接参与骨吸收,是骨组织吸收的主要功能细胞。目前,多数学者认为OC来源于单核/巨噬细胞前体细胞[67],到目前为止尚缺乏成熟的OC细胞株,因此机械分离法是最直接最有效获得成熟OC的方法。根据OC体形巨大、能迅速粘附于基质的特点,本研究在原机械分离方法上改进,培养1h后再用培养液冲洗,以除去大量未贴壁的细胞,达到相对纯化的目的。24h动态观察发现,8~10h最典型,胞核清晰,细胞饱满,丝状足密集,呈伪足样运动、TRAP阳性等特点,12h细胞开始凋亡,24h典型细胞形态完全消失,机械分离法培养的OC含量少又非常脆弱,成为其生化学和分子生物学研究的严重限制因素。
    
  由骨髓和其它组织诱导培养形成的细胞与成熟的OC来源不同,称为OLC[2]。课题组用1,25(OH)2 D3成功地在体外诱导SD大鼠骨髓细胞分化形成OLC,发现在1×10-8mol.L-1 1,25(OH)2 D3的作用下,骨髓细胞可形成大量的TRAP+、在骨片上形成陷窝的多核巨细胞,与文献报道一致[1]。1,25(OH)2D3为VitD生物活性最强的代谢产物,与成骨细胞(osteoblast, OB)的1,25(OH)2D3受体结合,上调破骨细胞分化因子(receptor activator of NFκB Ligand, RANKL),直接刺激多核OC的分化成熟,同时可促使OB分泌粒细胞集落刺激因子(MCSF),间接促进OC形成[8]。骨髓中的破骨前体细胞在诱导因子的作用下逐渐向OC分化,实验显示OCL骨吸收数目、面积逐渐增多,活力逐渐增强。1,25(OH)2 D3诱导出的OLC数量明显多于机械分离的方法,且OCL周围的单核细胞逐渐不断融合,形成更大的OCL,细胞核逐渐增多,早期细胞核多于5个的OLC数量总体上少于机械分离OC的数量,但晚期多核OCL明显增多,且存活时间远长于机械分离的成熟OC。机械法骨吸收陷窝边界清楚,部分出现穿凿样改变,而诱导法从出现少量小陷窝到陷窝的数量、深度逐渐增加。虽然诱导培养OLC依赖骨髓细胞中的OB和OC前体细胞来实现的,很难分离到纯的OC,还有待于进一步改善方法提高其纯度,但是诱导法培养法明显优于机械分离法。
    
  Atpase a3基因产物为分子量116 KDa的蛋白(a3),是OC空泡型质子泵(空泡型氢离子三磷酸腺苷转运酶Vacuolar H+translocatiing,ATPase,简称VATPase) 跨膜部分之一,VATPase活化后将H+分泌到细胞外而完成骨吸收功能。李亦平等[9]克隆了小鼠该基因,并制备出该基因缺失的小鼠,该小鼠的OC数目正常,可附着在骨上,但不能形成吸收陷窝;破骨样多核细胞不能形成细胞外酸化腔,也不能使骨去矿物化;OC失去细胞外酸化功能,使小鼠出现严重的骨质硬化。同时Niikura[3]也表明ATPase a3对OC发挥骨吸收功能是必需的,该基因的突变是婴儿恶性骨硬化病发生及胚胎致死的关键原因[10]。利用OC噬骨形成吸收陷窝特性,观察陷窝的形态和测量陷窝的数量、大小、深度,以及Atpase a3基因表达量是检测OC骨吸收功能的可靠指标。
    
  RTPCR实验证实,经机械分离培养后,相对数量少的成熟的OC骨吸收关键基因ATPase a3表达量较诱导早期(6d)OLC多,而少于8d的OLC,由此可知细胞核数与OC骨吸收功能直接相关,与Manolson[11]报道一致,其研究发现a3亚基的表达随破骨细胞核数(2~5,6~9和≥10)的增多而逐渐增加,a3 mRNA在大破骨细胞中比在小破骨细胞中高2.5倍,而a3是VATPase的关键性亚基,由ATPase a3基因调控,是功能性破骨细胞的必需成分,可见诱导培养的早期OLC可能并未达到完全分化且胞核数少,因而在骨片上形成的吸收陷窝较小,后期多核OCL逐渐增多,陷窝的数量、深度逐渐增加,基本接近成熟的OC。由此可知:机械分离培养法,可简单有效的获得骨吸收功能较活跃的OC,但存活时间短不利于进行长期生化和分子生物研究,且需要牺牲大量的动物;而1,25(OH)2D3诱导法可以获得数量多且生存时间较长的OCL,因此更适合用于OC分化发育过程的研究以及关键基因的转基因筛选应用。同时OC的骨吸收功能与其核数直接相关,机械分离下来的细胞为胞核多的成熟OC,骨吸收功能强于胞核较少的早期OLC,单核细胞逐渐不断融合,形成更多、更大的OCL,诱导晚期的OCL数量和功能上完全可以替代成熟OC进行各类实验。
    
  OC功能异常导致骨改建平衡失调,是多种代谢性骨病的病理基础,1,25(OH)2D3诱导法成功的建立OCL培养体系,替代机械分离成熟OC方法,建立较为稳定的实验平台,为利用分子生物方法高效特异的抑制OC的骨吸收功能奠定基础,能有效的纠正绝对或者相对旺盛的骨吸收功能状态,达到恢复骨吸收、重建动态平衡,就可以有效防治如骨质疏松症、Paget’s病、激素性股骨头坏死、风湿性关节炎、肿瘤、牙周病等疾病,因此具有广阔的基础研究和临床应用前景。

【参考文献】
    [1] 李铁军,于世凤,王晓敏.1,25二羟基维生素D3对小鼠骨髓细胞形成破骨细胞样细胞及其骨吸收效应的影响[J].中国骨质疏松杂,2000,6(3):1215.

  [2] 孙元明.源于脾干细胞的破骨细胞诱导生成及培养[J].中国地方病学杂志,2003,22(2):101103.

  [3] Niikura K.Vacuolar ATPase as a drug discovery target[J]. Drug News Perspect,2006, 19(3):139144.

  [4] 王洪复.骨细胞图谱与骨细胞体外培养技术[M].上海:上海科学技术出版社,2001:55.

  [5] Hu Y, Nyman J, Muhonen P, et al. Inhibition of the osteoclast VATPase by small interfering RNAs[J]. FEBS Lett,2005,579(22):493742.

  [6] Blair HC, Athanasou NA. Recent advances in osteoclast biology and pathological bone resorption[J]. Histol Histopathol,2004,19(1):18999.

  [7] Stenbeck G, Horton MA. Endocytic trafficking in actively resorbing osteoclasts[J]. J Cell Sci,2004,29:117(Pt 6):82736.

  [8] Jimi E, Shuto T, Koga T. Macrophage colonystimulating factor and interleukin1 alpha maintain the survival of osteoclastlike cells[J]Endocrinology,1995,136(2): 808811.

  [9] Li YP, Chen W, Liang Y, et al. Atp6ideficient mice exhibit severe osteopetrosis due to loss of osteoclastmediated extracellular acidification[J]. Nat Genet,1999,23(4): 447451.

  [10]Xu J, Cheng T, Feng HT, et al. Structure and function of VATPases in osteoclasts: potential therapeutic targets for the treatment of osteolysis[J]. Histol Histopathol,2007, 22(4):44354.

  [11]Manolson MF, Yu H, Chen W, et al. The a3 isoform of the 100kDa VATPase subunit is highly but differentially expressed in large(≥10 nuclei) and small(≤5 nuclei) osteoclasts[J]. J Biol Chem,2003,278(49):4927149278.

  • 上一个论文:

  • 下一个论文:
  • 推荐文章
    两种方法治疗糖尿病足的观察
    不同体质对应的中医减肥方法
    中西方文化中“谦虚”的不同
    浅谈不同预期下应收票据贴现
    休闲与娱乐:两种文化形态的联
    浅析不同的图像传输方式在高
    烤烟漂浮育苗不同替代基质对
    不同种植目的糯玉米合理种植
    基于不同分销渠道模式的中间
    教师节送不同鲜花的含义